Menu
围绕hadoop开源流的大数据实现框架

目前围绕Hadoop体系的大数据架构包括:

传统大数据架构

数据分析的业务没有发生任何变化,但是因为数据量、性能等问题导致系统无法正常使用,需要进行升级改造,那么此类架构便是为了解决这个问题。依然保留了ETL的动作,将数据经过ETL动作进入数据存储。数据分析需求依旧以BI场景为主,但是因为数据量、性能等问题无法满足日常使用。

流式架构

在传统大数据架构的基础上,流式架构数据全程以流的形式处理,在数据接入端将ETL替换为数据通道。经过流处理加工后的数据,以消息的形式直接推送给了消费者。存储部分在外围系统以窗口的形式进行存储。适用于预警、监控、对数据有有效期要求的情况。

Lambda架构

Lambda架构算大数据系统里面举足轻重的架构,数据通道分为两条分支:实时流和离线。实时流依照流式架构,保障了其实时性,而离线则以批处理方式为主,保障了最终一致性。适用于同时存在实时和离线需求的情况。

Kappa架构

Kappa架构在Lambda的基础上进行了优化,将实时和流部分进行了合并,将数据通道以消息队列进行替代。因此对于Kappa架构来说,依旧以流处理为主,但是数据却在数据湖层面进行了存储,当需要进行离线分析或者再次计算的时候,则将数据湖的数据再次经过消息队列重播一次则可。

Unifield架构

Unifield架构将机器学习和数据处理揉为一体,在流处理层新增了机器学习层。数据在经过数据通道进入数据湖后,新增了模型训练部分,并且将其在流式层进行使用。同时流式层不单使用模型,也包含着对模型的持续训练。适用于有着大量数据需要分析,同时对机器学习方便又有着非常大的需求或者有规划的情况。